B1: Uniform Superposition

Time Limit: 3 sec

Memory Limit: 512 MiB

Score: 100

Writer: PSL

Editorial

By applying the Hadamard gate to each of the nn qubits, you can solve this problem.

0...0nHn12n(0...0n+...+1...1n)\begin{equation} \ket{0...0}_n \xrightarrow{H^{\otimes n}} \frac{1}{\sqrt{2^n}} (\ket{0...0}_n + ... + \ket{1...1}_n) \end{equation}

Sample Code

Below is a sample program:

from qiskit import QuantumCircuit
 
 
def solve(n: int) -> QuantumCircuit:
    qc = QuantumCircuit(n)
 
    qc.h(range(n))
 
    return qc

Alternatively, you can use a for-loop to apply nn Hadamard gates in-turn.

from qiskit import QuantumCircuit
 
 
def solve(n: int) -> QuantumCircuit:
    qc = QuantumCircuit(n)
    
    for i in range(n):
      qc.h(i)
 
    return qc