Editorial
In this problem, you can apply the idea from problem A6.
Let's consider the exampleof n = 2 n = 2 n = 2 below.
It is important to treat the first and third qubits as one pair and the second and fourth qubits as another pair, as shown in the figure above.
Same type of quantum gate is applied to each pair.
From here, let's examine the state transitions induced by each quantum gate.
Consider the superposition state of ∣ 0000 ⟩ , ∣ 1000 ⟩ , ∣ 0100 ⟩ , ∣ 1100 ⟩ \ket{0000}, \ket{1000}, \ket{0100}, \ket{1100} ∣ 0000 ⟩ , ∣ 1000 ⟩ , ∣ 0100 ⟩ , ∣ 1100 ⟩ , where a 0 , a 1 , a 2 , a 3 a_0, a_1, a_2, a_3 a 0 , a 1 , a 2 , a 3 are the probability amplitudes of each state.
a 0 ∣ 0000 ⟩ + a 1 ∣ 1000 ⟩ + a 2 ∣ 0100 ⟩ + a 3 ∣ 1100 ⟩ = ( a 0 ∣ 00 ⟩ + a 1 ∣ 10 ⟩ + a 2 ∣ 01 ⟩ + a 3 ∣ 11 ⟩ ) ∣ 00 ⟩ \begin{equation}
a_0 \ket{0000} + a_1 \ket{1000} + a_2 \ket{0100} + a_3 \ket{1100} = (a_0 \ket{00} + a_1 \ket{10} + a_2 \ket{01} + a_3 \ket{11}) \ket{00}
\end{equation} a 0 ∣ 0000 ⟩ + a 1 ∣ 1000 ⟩ + a 2 ∣ 0100 ⟩ + a 3 ∣ 1100 ⟩ = ( a 0 ∣ 00 ⟩ + a 1 ∣ 10 ⟩ + a 2 ∣ 01 ⟩ + a 3 ∣ 11 ⟩ ) ∣ 00 ⟩
First, apply R y Ry R y gate with θ = 2 arctan ( 2 ) \theta = 2 \arctan{(\sqrt{2})} θ = 2 arctan ( 2 ) .
( a 0 ∣ 00 ⟩ + a 1 ∣ 10 ⟩ + a 2 ∣ 01 ⟩ + a 3 ∣ 11 ⟩ ) ∣ 00 ⟩ → R y ( θ , 2 ) → R y ( θ , 3 ) ( a 0 ∣ 00 ⟩ + a 1 ∣ 10 ⟩ + a 2 ∣ 01 ⟩ + a 3 ∣ 11 ⟩ ) ( 1 3 ∣ 0 ⟩ + 2 3 ∣ 1 ⟩ ) ( 1 3 ∣ 0 ⟩ + 2 3 ∣ 1 ⟩ ) \begin{align}
&(a_0 \ket{00} + a_1 \ket{10} + a_2 \ket{01} + a_3 \ket{11}) \ket{00} \nonumber \\
&\xrightarrow{Ry(\theta, 2)} \xrightarrow{Ry(\theta, 3)}
(a_0 \ket{00} + a_1 \ket{10} + a_2 \ket{01} + a_3 \ket{11}) \left( \frac{1}{\sqrt{3}} \ket{0} + \frac{\sqrt{2}}{\sqrt{3}} \ket{1}\right) \left( \frac{1}{\sqrt{3}} \ket{0} + \frac{\sqrt{2}}{\sqrt{3}} \ket{1}\right)
\end{align} ( a 0 ∣ 00 ⟩ + a 1 ∣ 10 ⟩ + a 2 ∣ 01 ⟩ + a 3 ∣ 11 ⟩ ) ∣ 00 ⟩ R y ( θ , 2 ) R y ( θ , 3 ) ( a 0 ∣ 00 ⟩ + a 1 ∣ 10 ⟩ + a 2 ∣ 01 ⟩ + a 3 ∣ 11 ⟩ ) ( 3 1 ∣ 0 ⟩ + 3 2 ∣ 1 ⟩ ) ( 3 1 ∣ 0 ⟩ + 3 2 ∣ 1 ⟩ )
Next, generate a state that can be enclosed in 1 / 3 1/3 1/3 by applying the controlled H H H gate.
( a 0 ∣ 00 ⟩ + a 1 ∣ 10 ⟩ + a 2 ∣ 01 ⟩ + a 3 ∣ 11 ⟩ ) ( 1 3 ∣ 0 ⟩ + 2 3 ∣ 1 ⟩ ) ( 1 3 ∣ 0 ⟩ + 2 3 ∣ 1 ⟩ ) → C H ( 2 , 0 ) → C H ( 3 , 1 ) 1 3 ( a 0 ∣ 0000 ⟩ + a 1 ∣ 1000 ⟩ + a 2 ∣ 0100 ⟩ + a 3 ∣ 1100 ⟩ + ( a 0 + a 1 ) ∣ 0010 ⟩ + ( a 0 − a 1 ) ∣ 1010 ⟩ + ( a 2 + a 3 ) ∣ 0110 ⟩ + ( a 2 − a 3 ) ∣ 1110 ⟩ + ( a 1 + a 3 ) ∣ 1001 ⟩ + ( a 1 − a 3 ) ∣ 1101 ⟩ + ( a 0 + a 2 ) ∣ 0001 ⟩ + ( a 0 − a 2 ) ∣ 0101 ⟩ + ( a 0 + a 1 + a 2 + a 3 ) ∣ 0011 ⟩ + ( a 0 − a 1 + a 2 − a 3 ) ∣ 1011 ⟩ + ( a 0 + a 1 − a 2 − a 3 ) ∣ 0111 ⟩ + ( a 0 − a 1 − a 2 + a 3 ) ∣ 1111 ⟩ ) \begin{align}
&(a_0 \ket{00} + a_1 \ket{10} + a_2 \ket{01} + a_3 \ket{11}) \left( \frac{1}{\sqrt{3}} \ket{0} + \frac{\sqrt{2}}{\sqrt{3}} \ket{1}\right) \left( \frac{1}{\sqrt{3}} \ket{0} + \frac{\sqrt{2}}{\sqrt{3}} \ket{1}\right) \nonumber \\
&\xrightarrow{CH(2, 0)} \xrightarrow{CH(3, 1)} \frac{1}{3} (a_0 \ket{0000} + a_1 \ket{1000} + a_2 \ket{0100} + a_3 \ket{1100} \nonumber \\
&\hspace{30mm} + (a_0 + a_1) \ket{0010} + (a_0 - a_1) \ket{1010} + (a_2 + a_3) \ket{0110} + (a_2 - a_3) \ket{1110} \nonumber \\
&\hspace{30mm} + (a_1 + a_3) \ket{1001} + (a_1 - a_3) \ket{1101} + (a_0 + a_2) \ket{0001} + (a_0 - a_2) \ket{0101} \nonumber \\
&\hspace{30mm} + (a_0 + a_1 + a_2 + a_3) \ket{0011} + (a_0 - a_1 + a_2 - a_3) \ket{1011} \nonumber \\
&\hspace{30mm} + (a_0 + a_1 - a_2 - a_3) \ket{0111} + (a_0 - a_1 - a_2 + a_3) \ket{1111})
\end{align} ( a 0 ∣ 00 ⟩ + a 1 ∣ 10 ⟩ + a 2 ∣ 01 ⟩ + a 3 ∣ 11 ⟩ ) ( 3 1 ∣ 0 ⟩ + 3 2 ∣ 1 ⟩ ) ( 3 1 ∣ 0 ⟩ + 3 2 ∣ 1 ⟩ ) C H ( 2 , 0 ) C H ( 3 , 1 ) 3 1 ( a 0 ∣ 0000 ⟩ + a 1 ∣ 1000 ⟩ + a 2 ∣ 0100 ⟩ + a 3 ∣ 1100 ⟩ + ( a 0 + a 1 ) ∣ 0010 ⟩ + ( a 0 − a 1 ) ∣ 1010 ⟩ + ( a 2 + a 3 ) ∣ 0110 ⟩ + ( a 2 − a 3 ) ∣ 1110 ⟩ + ( a 1 + a 3 ) ∣ 1001 ⟩ + ( a 1 − a 3 ) ∣ 1101 ⟩ + ( a 0 + a 2 ) ∣ 0001 ⟩ + ( a 0 − a 2 ) ∣ 0101 ⟩ + ( a 0 + a 1 + a 2 + a 3 ) ∣ 0011 ⟩ + ( a 0 − a 1 + a 2 − a 3 ) ∣ 1011 ⟩ + ( a 0 + a 1 − a 2 − a 3 ) ∣ 0111 ⟩ + ( a 0 − a 1 − a 2 + a 3 ) ∣ 1111 ⟩ )
Then, apply the X X X gate and the controlled X X X gate to swap the probability amplitudes.
1 3 ( a 0 ∣ 0000 ⟩ + a 1 ∣ 1000 ⟩ + a 2 ∣ 0100 ⟩ + a 3 ∣ 1100 ⟩ + ( a 0 + a 1 ) ∣ 0010 ⟩ + ( a 0 − a 1 ) ∣ 1010 ⟩ + ( a 2 + a 3 ) ∣ 0110 ⟩ + ( a 2 − a 3 ) ∣ 1110 ⟩ + ( a 1 + a 3 ) ∣ 1001 ⟩ + ( a 1 − a 3 ) ∣ 1101 ⟩ + ( a 0 + a 2 ) ∣ 0001 ⟩ + ( a 0 − a 2 ) ∣ 0101 ⟩ + ( a 0 + a 1 + a 2 + a 3 ) ∣ 0011 ⟩ + ( a 0 − a 1 + a 2 − a 3 ) ∣ 1011 ⟩ + ( a 0 + a 1 − a 2 − a 3 ) ∣ 0111 ⟩ + ( a 0 − a 1 − a 2 + a 3 ) ∣ 1111 ⟩ ) → X ( 0 ) → C X ( 0 , 2 ) → X ( 0 ) → X ( 1 ) → C X ( 1 , 3 ) → X ( 1 ) 1 3 ( ( a 0 + a 1 + a 2 + a 3 ) ∣ 0000 ⟩ + ( a 1 + a 3 ) ∣ 1000 ⟩ + ( a 2 + a 3 ) ∣ 0100 ⟩ + a 3 ∣ 1100 ⟩ + ( a 0 + a 2 ) ∣ 0010 ⟩ + ( a 0 − a 1 + a 2 − a 3 ) ∣ 1010 ⟩ + a 2 ∣ 0110 ⟩ + ( a 2 − a 3 ) ∣ 1110 ⟩ + ( a 0 + a 1 ) ∣ 0001 ⟩ + ( a 0 + a 1 − a 2 − a 3 ) ∣ 0101 ⟩ + a 1 ∣ 1001 ⟩ + ( a 1 − a 3 ) ∣ 1101 ⟩ + a 0 ∣ 0011 ⟩ + ( a 0 − a 1 ) ∣ 1011 ⟩ + ( a 0 − a 2 ) ∣ 0111 ⟩ + ( a 0 − a 1 − a 2 + a 3 ) ∣ 1111 ⟩ ) \begin{align}
&\frac{1}{3} (a_0 \ket{0000} + a_1 \ket{1000} + a_2 \ket{0100} + a_3 \ket{1100} \nonumber \\
&\hspace{10mm} + (a_0 + a_1) \ket{0010} + (a_0 - a_1) \ket{1010} + (a_2 + a_3) \ket{0110} + (a_2 - a_3) \ket{1110} \nonumber \\
&\hspace{10mm} + (a_1 + a_3) \ket{1001} + (a_1 - a_3) \ket{1101} + (a_0 + a_2) \ket{0001} + (a_0 - a_2) \ket{0101} \nonumber \\
&\hspace{10mm} + (a_0 + a_1 + a_2 + a_3) \ket{0011} + (a_0 - a_1 + a_2 - a_3) \ket{1011} \nonumber \\
&\hspace{10mm} + (a_0 + a_1 - a_2 - a_3) \ket{0111} + (a_0 - a_1 - a_2 + a_3) \ket{1111}) \nonumber \\
&\xrightarrow{X(0)} \xrightarrow{CX(0, 2)} \xrightarrow{X(0)} \xrightarrow{X(1)} \xrightarrow{CX(1, 3)} \xrightarrow{X(1)} \nonumber \\
&\frac{1}{3} ((a_0 + a_1 + a_2 + a_3) \ket{0000} + (a_1 + a_3) \ket{1000} + (a_2 + a_3) \ket{0100} + a_3 \ket{1100} \nonumber \\
&\hspace{10mm} + (a_0 + a_2) \ket{0010} + (a_0 - a_1 + a_2 - a_3) \ket{1010} + a_2 \ket{0110} + (a_2 - a_3) \ket{1110} \nonumber \\
&\hspace{10mm} + (a_0 + a_1) \ket{0001} + (a_0 + a_1 - a_2 - a_3) \ket{0101} + a_1 \ket{1001} + (a_1 - a_3) \ket{1101} \nonumber \\
&\hspace{10mm} + a_0 \ket{0011} + (a_0 - a_1) \ket{1011} + (a_0 - a_2) \ket{0111} + (a_0 - a_1 - a_2 + a_3) \ket{1111})
\end{align} 3 1 ( a 0 ∣ 0000 ⟩ + a 1 ∣ 1000 ⟩ + a 2 ∣ 0100 ⟩ + a 3 ∣ 1100 ⟩ + ( a 0 + a 1 ) ∣ 0010 ⟩ + ( a 0 − a 1 ) ∣ 1010 ⟩ + ( a 2 + a 3 ) ∣ 0110 ⟩ + ( a 2 − a 3 ) ∣ 1110 ⟩ + ( a 1 + a 3 ) ∣ 1001 ⟩ + ( a 1 − a 3 ) ∣ 1101 ⟩ + ( a 0 + a 2 ) ∣ 0001 ⟩ + ( a 0 − a 2 ) ∣ 0101 ⟩ + ( a 0 + a 1 + a 2 + a 3 ) ∣ 0011 ⟩ + ( a 0 − a 1 + a 2 − a 3 ) ∣ 1011 ⟩ + ( a 0 + a 1 − a 2 − a 3 ) ∣ 0111 ⟩ + ( a 0 − a 1 − a 2 + a 3 ) ∣ 1111 ⟩ ) X ( 0 ) CX ( 0 , 2 ) X ( 0 ) X ( 1 ) CX ( 1 , 3 ) X ( 1 ) 3 1 (( a 0 + a 1 + a 2 + a 3 ) ∣ 0000 ⟩ + ( a 1 + a 3 ) ∣ 1000 ⟩ + ( a 2 + a 3 ) ∣ 0100 ⟩ + a 3 ∣ 1100 ⟩ + ( a 0 + a 2 ) ∣ 0010 ⟩ + ( a 0 − a 1 + a 2 − a 3 ) ∣ 1010 ⟩ + a 2 ∣ 0110 ⟩ + ( a 2 − a 3 ) ∣ 1110 ⟩ + ( a 0 + a 1 ) ∣ 0001 ⟩ + ( a 0 + a 1 − a 2 − a 3 ) ∣ 0101 ⟩ + a 1 ∣ 1001 ⟩ + ( a 1 − a 3 ) ∣ 1101 ⟩ + a 0 ∣ 0011 ⟩ + ( a 0 − a 1 ) ∣ 1011 ⟩ + ( a 0 − a 2 ) ∣ 0111 ⟩ + ( a 0 − a 1 − a 2 + a 3 ) ∣ 1111 ⟩ )
Finally, by applying the C Z CZ CZ gate, the sign of the probability amplitudes of the state where "the first and third qubits are both 1 1 1 " or "the second and fourth qubits are both 1 1 1 " is reversed.
1 3 ( ( a 0 + a 1 + a 2 + a 3 ) ∣ 0000 ⟩ + ( a 1 + a 3 ) ∣ 1000 ⟩ + ( a 2 + a 3 ) ∣ 0100 ⟩ + a 3 ∣ 1100 ⟩ + ( a 0 + a 2 ) ∣ 0010 ⟩ + ( a 0 − a 1 + a 2 − a 3 ) ∣ 1010 ⟩ + a 2 ∣ 0110 ⟩ + ( a 2 − a 3 ) ∣ 1110 ⟩ + ( a 0 + a 1 ) ∣ 0001 ⟩ + ( a 0 + a 1 − a 2 − a 3 ) ∣ 0101 ⟩ + a 1 ∣ 1001 ⟩ + ( a 1 − a 3 ) ∣ 1101 ⟩ + a 0 ∣ 0011 ⟩ + ( a 0 − a 1 ) ∣ 1011 ⟩ + ( a 0 − a 2 ) ∣ 0111 ⟩ + ( a 0 − a 1 − a 2 + a 3 ) ∣ 1111 ⟩ ) → C Z ( 2 , 0 ) → C Z ( 3 , 1 ) 1 3 ( ( a 0 + a 1 + a 2 + a 3 ) ∣ 0000 ⟩ + ( a 1 + a 3 ) ∣ 1000 ⟩ + ( a 2 + a 3 ) ∣ 0100 ⟩ + a 3 ∣ 1100 ⟩ + ( a 0 + a 2 ) ∣ 0010 ⟩ − ( a 0 − a 1 + a 2 − a 3 ) ∣ 1010 ⟩ + a 2 ∣ 0110 ⟩ − ( a 2 − a 3 ) ∣ 1110 ⟩ + ( a 0 + a 1 ) ∣ 0001 ⟩ − ( a 0 + a 1 − a 2 − a 3 ) ∣ 0101 ⟩ + a 1 ∣ 1001 ⟩ − ( a 1 − a 3 ) ∣ 1101 ⟩ + a 0 ∣ 0011 ⟩ − ( a 0 − a 1 ) ∣ 1011 ⟩ − ( a 0 − a 2 ) ∣ 0111 ⟩ + ( a 0 − a 1 − a 2 + a 3 ) ∣ 1111 ⟩ ) \begin{align}
&\frac{1}{3} ((a_0 + a_1 + a_2 + a_3) \ket{0000} + (a_1 + a_3) \ket{1000} + (a_2 + a_3) \ket{0100} + a_3 \ket{1100} \nonumber \\
&\hspace{10mm} + (a_0 + a_2) \ket{0010} + (a_0 - a_1 + a_2 - a_3) \ket{1010} + a_2 \ket{0110} + (a_2 - a_3) \ket{1110} \nonumber \\
&\hspace{10mm} + (a_0 + a_1) \ket{0001} + (a_0 + a_1 - a_2 - a_3) \ket{0101} + a_1 \ket{1001} + (a_1 - a_3) \ket{1101} \nonumber \\
&\hspace{10mm} + a_0 \ket{0011} + (a_0 - a_1) \ket{1011} + (a_0 - a_2) \ket{0111} + (a_0 - a_1 - a_2 + a_3) \ket{1111}) \nonumber \\
&\xrightarrow{CZ(2, 0)} \xrightarrow{CZ(3, 1)} \nonumber \\
&\frac{1}{3} ((a_0 + a_1 + a_2 + a_3) \ket{0000} + (a_1 + a_3) \ket{1000} + (a_2 + a_3) \ket{0100} + a_3 \ket{1100} \nonumber \\
&\hspace{10mm} + (a_0 + a_2) \ket{0010} - (a_0 - a_1 + a_2 - a_3) \ket{1010} + a_2 \ket{0110} - (a_2 - a_3) \ket{1110} \nonumber \\
&\hspace{10mm} + (a_0 + a_1) \ket{0001} - (a_0 + a_1 - a_2 - a_3) \ket{0101} + a_1 \ket{1001} - (a_1 - a_3) \ket{1101} \nonumber \\
&\hspace{10mm} + a_0 \ket{0011} - (a_0 - a_1) \ket{1011} - (a_0 - a_2) \ket{0111} + (a_0 - a_1 - a_2 + a_3) \ket{1111})
\end{align} 3 1 (( a 0 + a 1 + a 2 + a 3 ) ∣ 0000 ⟩ + ( a 1 + a 3 ) ∣ 1000 ⟩ + ( a 2 + a 3 ) ∣ 0100 ⟩ + a 3 ∣ 1100 ⟩ + ( a 0 + a 2 ) ∣ 0010 ⟩ + ( a 0 − a 1 + a 2 − a 3 ) ∣ 1010 ⟩ + a 2 ∣ 0110 ⟩ + ( a 2 − a 3 ) ∣ 1110 ⟩ + ( a 0 + a 1 ) ∣ 0001 ⟩ + ( a 0 + a 1 − a 2 − a 3 ) ∣ 0101 ⟩ + a 1 ∣ 1001 ⟩ + ( a 1 − a 3 ) ∣ 1101 ⟩ + a 0 ∣ 0011 ⟩ + ( a 0 − a 1 ) ∣ 1011 ⟩ + ( a 0 − a 2 ) ∣ 0111 ⟩ + ( a 0 − a 1 − a 2 + a 3 ) ∣ 1111 ⟩ ) CZ ( 2 , 0 ) CZ ( 3 , 1 ) 3 1 (( a 0 + a 1 + a 2 + a 3 ) ∣ 0000 ⟩ + ( a 1 + a 3 ) ∣ 1000 ⟩ + ( a 2 + a 3 ) ∣ 0100 ⟩ + a 3 ∣ 1100 ⟩ + ( a 0 + a 2 ) ∣ 0010 ⟩ − ( a 0 − a 1 + a 2 − a 3 ) ∣ 1010 ⟩ + a 2 ∣ 0110 ⟩ − ( a 2 − a 3 ) ∣ 1110 ⟩ + ( a 0 + a 1 ) ∣ 0001 ⟩ − ( a 0 + a 1 − a 2 − a 3 ) ∣ 0101 ⟩ + a 1 ∣ 1001 ⟩ − ( a 1 − a 3 ) ∣ 1101 ⟩ + a 0 ∣ 0011 ⟩ − ( a 0 − a 1 ) ∣ 1011 ⟩ − ( a 0 − a 2 ) ∣ 0111 ⟩ + ( a 0 − a 1 − a 2 + a 3 ) ∣ 1111 ⟩ )
By summarizing the operations above, the state transitions are as follows.
However, the states where both the third and fourth qubits are both 0 0 0 or both 1 1 1 are omitted because their probability amplitudes do not matter in this problem.
a 0 ∣ 0000 ⟩ + a 1 ∣ 1000 ⟩ + a 2 ∣ 0100 ⟩ + a 3 ∣ 1100 ⟩ → q c 1 3 ( ( a 0 + a 1 + a 2 + a 3 ) ∣ 0000 ⟩ + ( a 1 + a 3 ) ∣ 1000 ⟩ + ( a 2 + a 3 ) ∣ 0100 ⟩ + a 3 ∣ 1100 ⟩ + a 0 ∣ 0011 ⟩ − ( a 0 − a 1 ) ∣ 1011 ⟩ − ( a 0 − a 2 ) ∣ 0111 ⟩ + ( a 0 − a 1 − a 2 + a 3 ) ∣ 1111 ⟩ ) \begin{align}
&a_0 \ket{0000} + a_1 \ket{1000} + a_2 \ket{0100} + a_3 \ket{1100} \nonumber\\
&\xrightarrow{\mathrm{qc}} \frac{1}{3} ((a_0 + a_1 + a_2 + a_3) \ket{0000} + (a_1 + a_3) \ket{1000} + (a_2 + a_3) \ket{0100} + a_3 \ket{1100} \nonumber \\
&\hspace{10mm} + a_0 \ket{0011} - (a_0 - a_1) \ket{1011} - (a_0 - a_2) \ket{0111} + (a_0 - a_1 - a_2 + a_3) \ket{1111})
\end{align} a 0 ∣ 0000 ⟩ + a 1 ∣ 1000 ⟩ + a 2 ∣ 0100 ⟩ + a 3 ∣ 1100 ⟩ qc 3 1 (( a 0 + a 1 + a 2 + a 3 ) ∣ 0000 ⟩ + ( a 1 + a 3 ) ∣ 1000 ⟩ + ( a 2 + a 3 ) ∣ 0100 ⟩ + a 3 ∣ 1100 ⟩ + a 0 ∣ 0011 ⟩ − ( a 0 − a 1 ) ∣ 1011 ⟩ − ( a 0 − a 2 ) ∣ 0111 ⟩ + ( a 0 − a 1 − a 2 + a 3 ) ∣ 1111 ⟩ )
When n = 2 n = 2 n = 2 , the formula shown in the problem statement is given by
1 3 n ∑ S ⊆ T ⊆ [ n ] a T ∣ S ⟩ n ∣ 0 ⟩ n + 1 3 n ∑ T ⊆ S ⊆ [ n ] ( − 1 ) ( ∣ S ∣ − ∣ T ∣ ) a T ∣ S ⟩ n ∣ 2 n − 1 ⟩ n = 1 3 ( ( a 0 + a 1 + a 2 + a 3 ) ∣ 0000 ⟩ + ( a 1 + a 3 ) ∣ 1000 ⟩ + ( a 2 + a 3 ) ∣ 0100 ⟩ + a 3 ∣ 1100 ⟩ + a 0 ∣ 0011 ⟩ − ( a 0 − a 1 ) ∣ 1011 ⟩ − ( a 0 − a 2 ) ∣ 0111 ⟩ + ( a 0 − a 1 − a 2 + a 3 ) ∣ 1111 ⟩ ) . \begin{align}
&\sqrt{\frac{1}{3^n}} \sum_{S \subseteq T \subseteq [n]} a_T \ket{S}_n \ket{0}_n + \sqrt{\frac{1}{3^n}} \sum_{T \subseteq S \subseteq [n]} (-1)^{(|S| - |T|)} a_T \ket{S}_n \ket{2^n - 1}_n \nonumber\\
&= \frac{1}{3} ((a_0 + a_1 + a_2 + a_3) \ket{0000} + (a_1 + a_3) \ket{1000} + (a_2 + a_3) \ket{0100} + a_3 \ket{1100} \nonumber \\
&\hspace{10mm} + a_0 \ket{0011} - (a_0 - a_1) \ket{1011} - (a_0 - a_2) \ket{0111} + (a_0 - a_1 - a_2 + a_3) \ket{1111}).
\end{align} 3 n 1 S ⊆ T ⊆ [ n ] ∑ a T ∣ S ⟩ n ∣ 0 ⟩ n + 3 n 1 T ⊆ S ⊆ [ n ] ∑ ( − 1 ) ( ∣ S ∣ − ∣ T ∣ ) a T ∣ S ⟩ n ∣ 2 n − 1 ⟩ n = 3 1 (( a 0 + a 1 + a 2 + a 3 ) ∣ 0000 ⟩ + ( a 1 + a 3 ) ∣ 1000 ⟩ + ( a 2 + a 3 ) ∣ 0100 ⟩ + a 3 ∣ 1100 ⟩ + a 0 ∣ 0011 ⟩ − ( a 0 − a 1 ) ∣ 1011 ⟩ − ( a 0 − a 2 ) ∣ 0111 ⟩ + ( a 0 − a 1 − a 2 + a 3 ) ∣ 1111 ⟩ ) .
By comparing the equations ( 6 ) (6) ( 6 ) and ( 7 ) (7) ( 7 ) , it is confirmed that the desired quantum state is prepared by the operations.
By performing this operation for general n n n , the problem can be solved.
Follow-up
As the problem name suggests, the probability amplitudes of each state in
1 3 n ∑ S ⊆ T ⊆ [ n ] a T ∣ S ⟩ n ∣ 0 ⟩ n \begin{equation}
\sqrt{\frac{1}{3^n}} \sum_{S \subseteq T \subseteq [n]} a_T \ket{S}_n \ket{0}_n
\end{equation} 3 n 1 S ⊆ T ⊆ [ n ] ∑ a T ∣ S ⟩ n ∣ 0 ⟩ n
corredpond to the Zeta transform, and those in
1 3 n ∑ T ⊆ S ⊆ [ n ] ( − 1 ) ( ∣ S ∣ − ∣ T ∣ ) a T ∣ S ⟩ n ∣ 2 n − 1 ⟩ n \begin{equation}
\sqrt{\frac{1}{3^n}} \sum_{T \subseteq S \subseteq [n]} (-1)^{(|S| - |T|)} a_T \ket{S}_n \ket{2^n - 1}_n
\end{equation} 3 n 1 T ⊆ S ⊆ [ n ] ∑ ( − 1 ) ( ∣ S ∣ − ∣ T ∣ ) a T ∣ S ⟩ n ∣ 2 n − 1 ⟩ n
correspond to the Mobius transform.
Sample Code
Below is a sample program:
import math
from qiskit import QuantumCircuit
def solve ( n : int ) -> QuantumCircuit:
qc = QuantumCircuit( 2 * n)
theta = 2 * math.atan(math.sqrt( 2 ))
for i in range (n):
qc.ry(theta, i + n)
qc.ch(n + i, i)
qc.x(i)
qc.cx(i, n + i)
qc.x(i)
qc.cz(n + i, i)
return qc