解説
ビットがどのように変化するかを考えるのではなく、振幅がどのように変化するかを考えてみましょう。
の例を考えます。
基底状態 の振幅を とし、左から順に書くと、本問の遷移は以下のように表現できます。

の2つは と異なる動きをしていることがわかります。
このとき、問題 B4 の操作で と を上手く選ぶと次のような遷移が実現できます。

よって、この問題の操作は次のようにして実現できます。

ただし、 は加算操作 を表し、B3と同様に実装できます。
回路の深さは です。
解答例
解答例は以下の通りです。
import math
from qiskit import QuantumCircuit
def qft(n: int) -> QuantumCircuit:
qc = QuantumCircuit(n)
for i in reversed(range(n)):
qc.h(i)
for j in reversed(range(i)):
qc.cp(math.pi / 2 ** (i - j), j, i)
for i in range(n // 2):
qc.swap(i, n - i - 1)
return qc
def crot(n: int, a: int) -> QuantumCircuit:
qc = QuantumCircuit(n + 1)
for i in range(n):
theta = 2 * math.pi * a * 2**i / 2**n
qc.cp(theta, n, i)
return qc
def cadd(n: int, a: int) -> QuantumCircuit:
qc = QuantumCircuit(n + 1)
qc.compose(qft(n), qubits=range(n), inplace=True)
qc.compose(crot(n, a), qubits=range(n + 1), inplace=True)
qc.compose(qft(n).inverse(), qubits=range(n), inplace=True)
return qc
# B4
def pack(n: int, s: int, t: int) -> QuantumCircuit:
qc = QuantumCircuit(n + 1)
qc.compose(cadd(n, 2 ** (n + 1) - t), qubits=range(n + 1), inplace=True)
qc.x(n)
qc.compose(cadd(n, -s), qubits=range(n + 1), inplace=True)
qc.x(n)
return qc
def rot(n: int, a: int) -> QuantumCircuit:
qc = QuantumCircuit(n)
for i in range(n):
theta = 2 * math.pi * a * 2**i / 2**n
qc.p(theta, i)
return qc
def add(n: int, a: int) -> QuantumCircuit:
qc = QuantumCircuit(n)
qc.compose(qft(n), qubits=range(n), inplace=True)
qc.compose(rot(n, a), qubits=range(n), inplace=True)
qc.compose(qft(n).inverse(), qubits=range(n), inplace=True)
return qc
def solve(n: int, a: int, L: int) -> QuantumCircuit:
qc = QuantumCircuit(n + 1)
qc.compose(add(n + 1, 2**n - L + a), qubits=range(n + 1), inplace=True)
qc.compose(pack(n, 2**n - L + a, 2**n + a), qubits=range(n + 1), inplace=True)
qc.compose(add(n + 1, a), qubits=range(n + 1), inplace=True)
return qc